An Asymptotic Multipartite Kühn-Osthus Theorem

نویسندگان

  • Ryan R. Martin
  • Richard Mycroft
  • Jozef Skokan
چکیده

In this paper we prove an asymptotic multipartite version of a well-known theorem of Kühn and Osthus by establishing, for any graph H with chromatic number r, the asymptotic multipartite minimum degree threshold which ensures that a large r-partite graph G admits a perfect H-tiling. We also give the threshold for an H-tiling covering all but a linear number of vertices of G, in a multipartite analogue of results of Komlós and of Shokoufandeh and Zhao.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding cycles of given length in oriented graphs

Kelly, Kühn and Osthus conjectured that for any ` ≥ 4 and the smallest number k ≥ 3 that does not divide `, any large enough oriented graph G with δ(G), δ−(G) ≥ b|V (G)|/kc+1 contains a directed cycle of length `. We prove this conjecture asymptotically for the case when ` is large enough compared to k and k ≥ 7. The case when k ≤ 6 was already settled asymptotically by Kelly, Kühn and Osthus.

متن کامل

Finding Hamilton cycles in robustly expanding digraphs

We provide an NC algorithm for finding Hamilton cycles in directed graphs with a certain robust expansion property. This property captures several known criteria for the existence of Hamilton cycles in terms of the degree sequence and thus we provide algorithmic proofs of (i) an ‘oriented’ analogue of Dirac’s theorem and (ii) an approximate version (for directed graphs) of Chvátal’s theorem.

متن کامل

Loose Hamilton cycles in hypergraphs

We prove that any k-uniform hypergraph on n vertices with minimum degree at least n 2(k−1) + o(n) contains a loose Hamilton cycle. The proof strategy is similar to that used by Kühn and Osthus for the 3-uniform case. Though some additional difficulties arise in the k-uniform case, our argument here is considerably simplified by applying the recent hypergraph blow-up lemma of Keevash.

متن کامل

Optimal Packings of Hamilton Cycles in Graphs of High Minimum Degree

We study the number of edge-disjoint Hamilton cycles one can guarantee in a sufficiently large graph G on n vertices with minimum degree δ = (1/2+α)n. For any constant α > 0, we give an optimal answer in the following sense: let regeven(n, δ) denote the degree of the largest even-regular spanning subgraph one can guarantee in a graph G on n vertices with minimum degree δ. Then the number of edg...

متن کامل

The minimum degree threshold for perfect graph packings

Let H be any graph. We determine (up to an additive constant) the minimum degree of a graph G which ensures that G has a perfect H-packing. More precisely, let δ(H, n) denote the smallest integer k such that every graph G whose order n is divisible by |H| and with δ(G) ≥ k contains a perfect H-packing. We show that

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2017